The sharp quantitative isocapacitary inequality

نویسندگان

چکیده

We prove a sharp quantitative form of the classical isocapacitary inequality. Namely, we show that difference between capacity set and ball with same volume bounds square Fraenkel asymmetry set. This provides positive answer to conjecture Hall, Hayman, Weitsman (J. Analyse Math. ’91).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sharp Sobolev Inequality in Quantitative Form

A quantitative version of the sharp Sobolev inequality in W (R), 1 < p < n, is established with a remainder term involving the distance from extremals.

متن کامل

The Sharp Quantitative Sobolev Inequality for Functions of Bounded Variation

The classical Sobolev embedding theorem of the space of functions of bounded variation BV (Rn) into Ln (Rn) is proved in a sharp quantitative form.

متن کامل

A Sharp Quantitative Isoperimetric Inequality in Higher Codimension

We establish a quantitative isoperimetric inequality in higher codimension. In particular, we prove that for any closed (n − 1)-dimensional manifold Γ in Rn+k the following inequality D(Γ) ≥ Cd(Γ) holds true. Here, D(Γ) stands for the isoperimetric gap of Γ, i.e. the deviation in measure of Γ from being a round sphere and d(Γ) denotes a natural generalization of the Fraenkel asymmetry index of ...

متن کامل

The Sharp Energy-capacity Inequality

Using the Oh–Schwarz spectral invariants and some arguments of Frauenfelder, Ginzburg, and Schlenk, we show that the π1-sensitive Hofer– Zehnder capacity of any subset of a closed symplectic manifold is less than or equal to its displacement energy. This estimate is sharp, and implies some new extensions of the Non-Squeezing Theorem.

متن کامل

A sharp weighted Wirtinger inequality

We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matematica Iberoamericana

سال: 2021

ISSN: ['2235-0616', '0213-2230']

DOI: https://doi.org/10.4171/rmi/1259